Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

minus(minus(x)) → x
minus(+(x, y)) → *(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y)) → +(minus(minus(minus(x))), minus(minus(minus(y))))
f(minus(x)) → minus(minus(minus(f(x))))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

minus(minus(x)) → x
minus(+(x, y)) → *(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y)) → +(minus(minus(minus(x))), minus(minus(minus(y))))
f(minus(x)) → minus(minus(minus(f(x))))

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

F(minus(x)) → MINUS(f(x))
MINUS(+(x, y)) → MINUS(minus(x))
MINUS(+(x, y)) → MINUS(minus(minus(y)))
MINUS(+(x, y)) → MINUS(y)
MINUS(+(x, y)) → MINUS(x)
MINUS(*(x, y)) → MINUS(minus(minus(y)))
F(minus(x)) → F(x)
MINUS(*(x, y)) → MINUS(x)
MINUS(*(x, y)) → MINUS(minus(y))
MINUS(*(x, y)) → MINUS(y)
F(minus(x)) → MINUS(minus(f(x)))
F(minus(x)) → MINUS(minus(minus(f(x))))
MINUS(*(x, y)) → MINUS(minus(minus(x)))
MINUS(+(x, y)) → MINUS(minus(minus(x)))
MINUS(*(x, y)) → MINUS(minus(x))
MINUS(+(x, y)) → MINUS(minus(y))

The TRS R consists of the following rules:

minus(minus(x)) → x
minus(+(x, y)) → *(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y)) → +(minus(minus(minus(x))), minus(minus(minus(y))))
f(minus(x)) → minus(minus(minus(f(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

F(minus(x)) → MINUS(f(x))
MINUS(+(x, y)) → MINUS(minus(x))
MINUS(+(x, y)) → MINUS(minus(minus(y)))
MINUS(+(x, y)) → MINUS(y)
MINUS(+(x, y)) → MINUS(x)
MINUS(*(x, y)) → MINUS(minus(minus(y)))
F(minus(x)) → F(x)
MINUS(*(x, y)) → MINUS(x)
MINUS(*(x, y)) → MINUS(minus(y))
MINUS(*(x, y)) → MINUS(y)
F(minus(x)) → MINUS(minus(f(x)))
F(minus(x)) → MINUS(minus(minus(f(x))))
MINUS(*(x, y)) → MINUS(minus(minus(x)))
MINUS(+(x, y)) → MINUS(minus(minus(x)))
MINUS(*(x, y)) → MINUS(minus(x))
MINUS(+(x, y)) → MINUS(minus(y))

The TRS R consists of the following rules:

minus(minus(x)) → x
minus(+(x, y)) → *(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y)) → +(minus(minus(minus(x))), minus(minus(minus(y))))
f(minus(x)) → minus(minus(minus(f(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F(minus(x)) → MINUS(f(x))
MINUS(+(x, y)) → MINUS(minus(x))
MINUS(+(x, y)) → MINUS(y)
MINUS(+(x, y)) → MINUS(minus(minus(y)))
MINUS(+(x, y)) → MINUS(x)
MINUS(*(x, y)) → MINUS(minus(minus(y)))
MINUS(*(x, y)) → MINUS(x)
F(minus(x)) → F(x)
MINUS(*(x, y)) → MINUS(y)
MINUS(*(x, y)) → MINUS(minus(y))
F(minus(x)) → MINUS(minus(f(x)))
F(minus(x)) → MINUS(minus(minus(f(x))))
MINUS(*(x, y)) → MINUS(minus(minus(x)))
MINUS(+(x, y)) → MINUS(minus(minus(x)))
MINUS(*(x, y)) → MINUS(minus(x))
MINUS(+(x, y)) → MINUS(minus(y))

The TRS R consists of the following rules:

minus(minus(x)) → x
minus(+(x, y)) → *(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y)) → +(minus(minus(minus(x))), minus(minus(minus(y))))
f(minus(x)) → minus(minus(minus(f(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 2 SCCs with 3 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS(+(x, y)) → MINUS(minus(x))
MINUS(+(x, y)) → MINUS(y)
MINUS(+(x, y)) → MINUS(minus(minus(y)))
MINUS(+(x, y)) → MINUS(x)
MINUS(*(x, y)) → MINUS(minus(minus(y)))
MINUS(*(x, y)) → MINUS(x)
MINUS(*(x, y)) → MINUS(minus(minus(x)))
MINUS(+(x, y)) → MINUS(minus(minus(x)))
MINUS(*(x, y)) → MINUS(minus(x))
MINUS(*(x, y)) → MINUS(y)
MINUS(*(x, y)) → MINUS(minus(y))
MINUS(+(x, y)) → MINUS(minus(y))

The TRS R consists of the following rules:

minus(minus(x)) → x
minus(+(x, y)) → *(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y)) → +(minus(minus(minus(x))), minus(minus(minus(y))))
f(minus(x)) → minus(minus(minus(f(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

F(minus(x)) → F(x)

The TRS R consists of the following rules:

minus(minus(x)) → x
minus(+(x, y)) → *(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y)) → +(minus(minus(minus(x))), minus(minus(minus(y))))
f(minus(x)) → minus(minus(minus(f(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


F(minus(x)) → F(x)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
F(x1)  =  x1
minus(x1)  =  minus(x1)

Recursive Path Order [2].
Precedence:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus(minus(x)) → x
minus(+(x, y)) → *(minus(minus(minus(x))), minus(minus(minus(y))))
minus(*(x, y)) → +(minus(minus(minus(x))), minus(minus(minus(y))))
f(minus(x)) → minus(minus(minus(f(x))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.